Earlier in the month, Wired reported that HP is planning to bring their TiO2-based resistive memory to market in 2014. Resistive memory is composed of a bunch of two-terminal devices that function as bits. Each device has a resistance that is determined by the past history of the voltage (equivalently current) applied to the device, and can be toggled between a high resistance state and a low resistance state. In HP's case, their devices are based on the oxidation and reduction of TiO2 and the diffusion of oxygen vacancies.
This announcement and reporting apparently raised some hackles. Wired has finally picked up on the fact that HP's use of the term "memristor" to describe their devices is more of a marketing move than a rigorous scientific claim. As I pointed out almost two years ago, memristors are (in my view) not really fundamental circuit elements in the same way as resistors, capacitors, and inductors; and just because some widget has a history-dependent resistance, that does not make it a memristor in the sense of the original definition.
No comments:
Post a Comment